
Claire Chen, Josh Bonivert, Eve Mango, Sofia Daubert | Python DeCal

Simulating Solar Systems



1.
Planets & orbits



3

Solar System Basics

- Kepler’s 3 Laws describe planetary motion
 
a) Planet orbits in an ellipse w/ Sun at 1 focus
b) Line connecting planet to Sun sweeps out equal areas in equal time intervals 
c) Square of orbital period is proportional to cube of planet’s semimajor axis 

Newton’s Laws Explain 
Kepler’s Observations 



4

Different Types of Planets



5

Transits

- Lightcurve: apparent magnitude (observed brightness) of star over time

- Periodic dips in observed brightness can be from transiting objects

- Detecting exoplanets through transit photometry

- Transit depth = planet:star radius ratio, squared



6

Objectives
- Simulate a solar system with 

multiple planets orbiting over 

time

- Represent transits of those 

planets

- Let users make different 

planets & create their own 

systems to simulate

- Make it look dope



2.
Putting it all together



8

Setting Up the System

- Object-oriented programming!

- Classes for Planet, Star, Solar System

- Functions for physics (gravitation)

- Planet & Star are subclasses of 

AstroObject to minimize repetition



9

User Inputs & GUI

- Jupyter Widgets

- User sets mass, velocity, and 

distance of planet from sun

- Slider bars and checkboxes for 

ease of use

- Dropdown to playback 

generated videos within 

notebook



10

Animating Orbits

- Iterate through planets in system to access their solutions 

to gravitation diff. eq.

- Plot orbit path using list of calculated positions (solutions)

- Challenge: ensuring enough time & space to fully display all



11

Transits

∙ Live-updating plot of apparent brightness -- lightcurve

∙ Define transit = when planet moves back to where it started (+/- a bit)

∙ If no planets are back to starting pos, flux = 1.0 (base)

∙ If a planet is back at starting pos, flux = 1.0 - (planet:star radius ratio)

∙ Iteration through all planets so multiple transits at same time can stack

∙ Challenge: updating in real time, not skipping any, & making them visible



12

Transit Bugs



13

Testing & Debugging

- Not enough time to complete all orbits?

- Very rough estimation of time needed: multiplier x 

distance of farthest planet

- Transits too small to be seen?

- Auto-set y-range on plot to go down to 10 x largest transit 

depth

- Whole orbit can’t fit in frame?

- Axes limits automatically set based on distance of farthest 

planet 

- Some people just want to see the world(s) burn… or freeze

- Slider limits what masses/distances/velocities can be



14

Step 5: Graphics & Display

∙ Matplotlib; annotation box

∙ Background to enhance space effect

∙ Skins on planets: custom image icon for each 

∙ getImage() reads image and places Annotation Box at planet’s location 

(solution/point) for each frame 



3.
The Final Product



16

http://www.youtube.com/watch?v=HrNRjbljW4Q


17



References & Citations

∙ Tools used:

∙ Astropy, Scipy, Numpy, Matplotlib, FFMPEG, Widgets

∙ https://ipywidgets.readthedocs.io/en/latest/ 

∙ https://matplotlib.org/stable/gallery/text_labels_and_annotations/demo_annotation_box.html

Helpful links:

∙ https://petercbsmith.github.io/marker-tutorial.html

∙ https://www.tutorialspoint.com/how-to-use-a-custom-png-image-marker-in-a-plot-matplotlib

∙ https://math24.net/newtons-law-universal-gravitation.html 

18

https://ipywidgets.readthedocs.io/en/latest/
https://matplotlib.org/stable/gallery/text_labels_and_annotations/demo_annotation_box.html
https://petercbsmith.github.io/marker-tutorial.html
https://www.tutorialspoint.com/how-to-use-a-custom-png-image-marker-in-a-plot-matplotlib
https://math24.net/newtons-law-universal-gravitation.html


Questions?



20

https://docs.google.com/file/d/1yqsew8fpN9w61XiJ3MJivqqWv5gQNiYU/preview

